1,448 research outputs found

    SEAI: Social Emotional Artificial Intelligence Based on Damasio's Theory of Mind

    Get PDF
    A socially intelligent robot must be capable to extract meaningful information in real-time from the social environment and react accordingly with coherent human-like behaviour. Moreover, it should be able to internalise this information, to reason on it at a higher abstract level, build its own opinions independently and then automatically bias the decision-making according to its unique experience. In the last decades, neuroscience research highlighted the link between the evolution of such complex behaviour and the evolution of a certain level of consciousness, which cannot leave out of a body that feels emotions as discriminants and prompters. In order to develop cognitive systems for social robotics with greater human-likeliness, we used an "understanding by building" approach to model and implement a well-known theory of mind in the form of an artificial intelligence, and we tested it on a sophisticated robotic platform. The name of the presented system is SEAI (Social Emotional Artificial Intelligence), a cognitive system specifically conceived for social and emotional robots. It is designed as a bio-inspired, highly modular, hybrid system with emotion modelling and high-level reasoning capabilities. It follows the deliberative/reactive paradigm where a knowledge-based expert system is aimed at dealing with the high-level symbolic reasoning, while a more conventional reactive paradigm is deputed to the low-level processing and control. The SEAI system is also enriched by a model which simulate the Damasio's theory of consciousness and the theory of Somatic Markers. After a review of similar bio-inspired cognitive systems, we present the scientific foundations and their computational formalisation at the basis of the SEAI framework. Then, a deeper technical description of the architecture is disclosed underlining the numerous parallelisms with the human cognitive system. Finally, the influence of artificial emotions and feelings, and their link with the robot's beliefs and decisions have been tested in a physical humanoid involved in Human-Robot Interaction (HRI)

    Can a Humanoid Face be Expressive? A Psychophysiological Investigation

    Get PDF
    Non-verbal signals expressed through body language play a crucial role in multi-modal human communication during social relations. Indeed, in all cultures, facial expressions are the most universal and direct signs to express innate emotional cues. A human face conveys important information in social interactions and helps us to better understand our social partners and establish empathic links. Latest researches show that humanoid and social robots are becoming increasingly similar to humans, both esthetically and expressively. However, their visual expressiveness is a crucial issue that must be improved to make these robots more realistic and intuitively perceivable by humans as not different from them. This study concerns the capability of a humanoid robot to exhibit emotions through facial expressions. More specifically, emotional signs performed by a humanoid robot have been compared with corresponding human facial expressions in terms of recognition rate and response time. The set of stimuli included standardized human expressions taken from an Ekman-based database and the same facial expressions performed by the robot. Furthermore, participants’ psychophysiological responses have been explored to investigate whether there could be differences induced by interpreting robot or human emotional stimuli. Preliminary results show a trend to better recognize expressions performed by the robot than 2D photos or 3D models. Moreover, no significant differences in the subjects’ psychophysiological state have been found during the discrimination of facial expressions performed by the robot in comparison with the same task performed with 2D photos and 3D models

    A Multimodal Perception Framework for Users Emotional State Assessment in Social Robotics

    Get PDF
    In this work, we present an unobtrusive and non-invasive perception framework based on the synergy between two main acquisition systems: the Touch-Me Pad, consisting of two electronic patches for physiological signal extraction and processing; and the Scene Analyzer, a visual-auditory perception system specifically designed for the detection of social and emotional cues. It will be explained how the information extracted by this specific kind of framework is particularly suitable for social robotics applications and how the system has been conceived in order to be used in human-robot interaction scenarios

    Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    Get PDF
    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects

    New generation of wearable goniometers for motion capture systems

    Get PDF
    Background Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient's home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented. Methods KPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed. Results The proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations. Conclusions Double layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented

    Interpreting Psychophysiological States Using Unobtrusive Wearable Sensors in Virtual Reality

    Get PDF
    One of the main challenges in the study of human be- havior is to quantitatively assess the participants’ affective states by measuring their psychophysiological signals in ecologically valid conditions. The quality of the acquired data, in fact, is often poor due to artifacts generated by natural interactions such as full body movements and gestures. We created a technology to address this problem. We enhanced the eXperience Induction Machine (XIM), an immersive space we built to conduct experiments on human behavior, with unobtrusive wearable sensors that measure electrocardiogram, breathing rate and electrodermal response. We conducted an empirical validation where participants wearing these sensors were free to move in the XIM space while exposed to a series of visual stimuli taken from the International Affective Picture System (IAPS). Our main result consists in the quan- titative estimation of the arousal range of the affective stimuli through the analysis of participants’ psychophysiological states. Taken together, our findings show that the XIM constitutes a novel tool to study human behavior in life-like conditions

    GEN-O-MA project: an Italian network studying clinical course and pathogenic pathways of moyamoya disease—study protocol and preliminary results

    Get PDF
    Background: GENetics of mOyaMoyA (GEN-O-MA) project is a multicenter observational study implemented in Italy aimed at creating a network of centers involved in moyamoya angiopathy (MA) care and research and at collecting a large series and bio-repository of MA patients, finally aimed at describing the disease phenotype and clinical course as well as at identifying biological or cellular markers for disease progression. The present paper resumes the most important study methodological issues and preliminary results. Methods: Nineteen centers are participating to the study. Patients with both bilateral and unilateral radiologically defined MA are included in the study. For each patient, detailed demographic and clinical as well as neuroimaging data are being collected. When available, biological samples (blood, DNA, CSF, middle cerebral artery samples) are being also collected for biological and cellular studies. Results: Ninety-eight patients (age of onset mean ± SD 35.5 ± 19.6 years; 68.4% females) have been collected so far. 65.3% of patients presented ischemic (50%) and haemorrhagic (15.3%) stroke. A higher female predominance concomitantly with a similar age of onset and clinical features to what was reported in previous studies on Western patients has been confirmed. Conclusion: An accurate and detailed clinical and neuroimaging classification represents the best strategy to provide the characterization of the disease phenotype and clinical course. The collection of a large number of biological samples will permit the identification of biological markers and genetic factors associated with the disease susceptibility in Italy

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore